BUCKET BRIGADE ATTACK USING ARP SPOOFING

Harshit Rastogi, Dr. Krishnaraj N, Aravinth M.

Abstract— DNS spoofing is a method for altering DNS requests made by clients such that the IP address returned in the query is whatever the attacker desires. A Man-in-the-Middle attack should also be conducted for the DNS spoofing attack to be successful, and this can be done through ARP spoofing. A cyber related attack which is known as a "man-in-the-middle" (MITM) assault demands the perpetrator secretly interrupt and relay communication between two parties who trust they are talking with one another directly. The action of poisoning Domain Name Service - DNS server entries to lead a targeted user to a malicious website under the charge of the attacker is called DNS cache poisoning. This paper basically focuses on understanding the previous papers to understand about the attack that can be done through various techniques. By doing this research we will be able to do a depth analysis of DNS spoofing attack along with the Man-in-the-Middle Attack. Further this paper continues with the expected outcome along with the conclusion that is required for the attacks.

Index Terms— Cyber Security, Hacking, Network, Penetration Testing, Domain Name System Spoofing, Man-in-the-Middle Attack, MiTM Attack, Cyber Attack, ARP Spoofing.

1 INTRODUCTION

The amount of time people spend online is growing significantly over time. A rapid escalation of stock market value emerged in the late 1990s, a time of rapid expansion in Internet usage and consumption, from the internet bubble, also known as the dot-com boom, the technology boom, or the internet boom. The world of today is a digital one. The world is online. Almost every characteristic of our life is associated with the utilization of the Internet and cellular networks. All the internet services save and transfer user's valuable data and details through some communication channels. [1] Hackers target the sensitive data and information of the enterprises, organizations, and individuals. This leaves the privacy of the user(s) more vulnerable to the attack. One of the very sensitive attacks is known as "Man-in-The-Middle Attack".

[3] The phrase "Man-In-The-Middle" refers to a situation in basketball where 2 players are attempting to hand over the ball to one another as a third player seeks to intercept it. Attacks using MITM are often known as fire brigade or bucket brigade attacks. [4] These names come from the method used by the fire brigade to put out a fire by transferring buckets between individuals standing between the water source and the flames. TCP session hijacking, Session hijacking, TCP hijacking, and Monkey-in-the-middle attacks are other names for MITM attacks.

[5] Man-in-The-Middle attack is a common terminology for when an adversary keeps himself in between a conversation of 2 users through software application - either to impersonate or to eavesdrop on one of the two parties. [6] Typically, an MITM attack comprises a third party (attacker) and two endpoint devices (victims). The attacker already has control over the channel of communication between the two endpoints and can change the content sent across it.[7] The motive of an attack is for stealing personal sensitive data, such as credit-card details, bank-account details, and other data such as login credentials. The usage of this information gathered during an attack may include unauthorized fund transfers, identity theft, or unauthorized password changes.

[8] Using the DNS spoofing technique, the IP address returned by a client's repeated DNS queries can be changed to match the attacker's desired IP address. A Man-in-the-Middle attack should also be conducted in order for the DNS spoofing attack to be successful, and this can be done through ARP spoofing. A DNS spoofing attack's series of events can be summed up as follows: - Intercept all DNS requests -> Return faked IP addresses -> ARP spoof to connect attacker's computer physical address (MAC) to IP address of the gateway [9]. DNS spoofing works by taking advantage of the way regular DNS queries operate. DNS packets are UDP packets, and as such, they often don't provide any authentication or encrypted information to confirm the packet's legitimacy. Therefore, by taking advantage of the absence of authentication mechanisms, anyone can impersonate the DNS server. To link the L2 layer address to the L3 layer address, ARP spoofing is necessary.

2 LITERATURE REVIEW

Ref No.	Work Done			Techniques used or Methods Described	Limitations Future Work	or
1.	[1]In	this	re-	[1] This	[1]With	this

[•] Harshit Rastogi is currently pursuing bachelor's degree program in Computer Science and Engineering in VIT University, India

Dr. Krishnaraj N. is an Associate Professor Sr. in School of Computer Science and Engineering in VIT University

[•] Aravinith M is currently pursuing bachelor's degree program in Computer Science and Engineering in VIT University, India

 and shielding picr. RSA is implemented using clanguage. and shielding picr. RSA is implemented using clanguage. and shielding picr. RSA is implemented using clanguage. and symmetric cy-pier. The DNS server must be acquired from the DNS server using either a static seture as a cquired from the DNS server using either a static seture as the clanguage. 2. [2]. This paper basically focus server channel. 2. [2]. This paper basically focus server channel. 2. [2]. This paper basically focus server and the attack server and the attack server and the attack server as in order to assess the effects on in depart of as corrected in this research are paper is to adid Distributions. 3. [3]This study gaper farming and DHCP Spoofing. [3]This study restrict for a website is corrigor and which the otopic is correct or a website of a website. [3]This study restrict for a website is corrigor and brice second at the topic research in the mode size of score conduct at second at the topic research in the struck technique is used in this research are size of an adverted the topic research in the struct technique is used in this research are size of an adverted the topic research in the struct technique is used in this research are size of an adverted the topic research in the struct technique is used in this research are size of an adverted the topic research and adverted the topic research and adverted the size scription. The-Middle Attack for the size scription and Bruce Forest, an								
data in messages and shielding them from tam- pering using an asymmetric cy- pher. The DNS server public key must be held by the cli- ent, and it can be acquired from the DNS server using either a static server using either a static server using either a static server using in the DNS server using either a static server or how to under- stand the attack furth have been de- have been de- harve been de- mend-in-the- middle attack in have been de- sing to conduct a it. C. A Description, readers in com- prehending and prehending and prehending and prehending and prehending and prehending and prehending and prehending and becoming famil- ir voriew[3]The prentra- tions.[3]The future research direc- tions.[3]The future research direc- tions.[3]The future research direc- tions.[3]The future research direc- tions.[3]The future research direc- <td></td> <td>od is provided to mitigate the aforementioned attacks by en-</td> <td>private key and public keys for the DNS servers using the RSA</td> <td rowspan="2">body can read the retaliation that is being sent ,but the main thing is that not everyone can decrypt the IP. Therefore for this paper, IP encryp- tion is required for DNS server</td> <td></td> <td>into a targeted machine to look for confidential</td> <td></td> <td></td>		od is provided to mitigate the aforementioned attacks by en-	private key and public keys for the DNS servers using the RSA	body can read the retaliation that is being sent ,but the main thing is that not everyone can decrypt the IP. Therefore for this paper, IP encryp- tion is required for DNS server		into a targeted machine to look for confidential		
 2. [2].This paper basically focus- icous types of mostly on how to under- semstly on how to under- stand the attack inter stand the attack inter paper is to aid paper is to aid paper is to aid prehending and prehending and prehending and percenting familiar with the top- ic. 3. [3]This study used terms from totated terms from totates, ing to conduct at this research are security review basically-Cross- on a website. The Middle Attack technique is still frequently employed by attacksers who are 3. [3]This study used terms from totates, ing to conduct at this research are security review basically-cross- on a website. This technique is still frequently employed by attacks wha are 3. [3]This study used terms from totates, ing to conduct at this research are security review basically-cross- on a website. This technique is still frequently employed by attacks wha are 4. This technique is tack technique is tacks wha are 5. [3]The study the daption indication and preference in complexity review is the scripting. The Middle Attack technique is tack technique is tack		and shielding them from tam- pering using an asymmetric cy- pher. The DNS server public key must be held by the cli- ent, and it can be acquired from the DNS server using either a static setup or a secure	pher. RSA is im- plemented using		4.	of this paper is to clarify the MITM and its various catego- ries. This paper's final goal is to propose some mechanisms for preventing such	various tech- niques are given to detect the Man in the middle attacks such as Voting-based solutions, server- based and host- based solutions, and crypto-	attacks with a variety of cryp- tographic tech- niques, including key diffusion and elliptic curve cryptography. The study focus- es to expand on this research in future work in order to assess the effects of
middleattack. "The goal of this paper is to aid readers in com- IP Spoofing and prehending and becoming famil- iar with the top- ic .paper is to aid (CA Description, IP Spoofing, and DHCP Spoofing, DHCP Spoofing, DHCP Spoofing, ic .research direc- tions.is most important most important becoming famil- iar with the top- ic .[5] This study which scribed the tools through which and tools neces- sary to compre- to attacks, the understand the system that rity concerns to attacks, the scribes the secu- understand the system technique to a that every threat prosent situation of the hazards to to prover security system technique this penetration test. This tech- nique is still fre- quently emi- ployed by at- tackers who are[3] The protect tackers who are[3] The penetra- to make our to conservation to a tracks, the work of this pa- per is basically to to the Man-In- The-Middle At- tackers who are[3] The penetra- to the string the proper security system technique to provent hack- er intrusion. 2. When testing the MITM ap- proach, employ methods other thackers who are[5] This study has bescally to compre- to attacks, the ideas models to de- of the hazards to conduct to provent hack- er intrusion. 2. When testing the MITM ap- proach, employ methods other thas sniffing.[5] This study has bescally to compre- to attacks, the ideas to compre- to attacks, the ideas the system that risks and the security review system technique to prove to attacks, the software system technique to prove to attacks, along search with focus of the hazards to comple- tioned in earlier search	2.	basically focus- es mostly on how to under- stand the attack	ious types of Man-in-the mid- dle-attacks that	not concentrate on in-depth analysis for Man-			N	various VANET backgrounds using the adapt- ability of the
3. [3]This study [3]The penetra- used terms from total tion testing tech- ing to conduct a security review basically-Cross- on a website. Site scripting, The Man-In- The-Middle At- tack technique is used to conduct this penetration test. This tech- nique is still fre- quently em- ployed by at- tackers who are		middle attack. "The goal of this paper is to aid readers in com- prehending and becoming famil- iar with the top-	paper ARP SPOOFING,SSL ,CA Description, IP Spoofing and	research direc-	5.	most important CPS (Cyber Physical Sys- tems) domains, this article de- scribes the secu- rity concerns	basically de- scribed the tools through which we can get access to attacks, the vulnerabilities in the system that	and researchers lack the ideas and tools neces- sary to compre- hend the differ- ent trending risks and the
sniffing, which mechanisms.	3.	used terms from penetration test- ing to conduct a security review on a website. The Man-In- The-Middle At- tack technique is used to conduct this penetration test. This tech- nique is still fre- quently em- ployed by at- tackers who are not in control of	tion testing tech- niques used in this research are basically-Cross- site scripting, SQL Injection, and Brute Force	 work of this paper is basically to 1. Using the proper security system technique to prevent hacker intrusion. 2. When testing the MITM approach, employ methods other 		understand the present situation of the hazards to CPS, investigate and analyse the dangers that have been men- tioned in earlier studies and re-	system more prone to attacks, what are the re- sults of those attacks along with the objec- tives. They have used several models like three tenets threat models to de- termine elements needed for the successful attack and also provide	that every threat may have on the software sys- tems. Future re- search will focus on the develop- ment, methods, applications, categories of as- saults, analysis of security con- cerns, and cur- rent trends, and open research issues related to the cyber- physical security

6	[6]The classifica- tion of MITM attacks into dif-	[6]Classified MITM attacks using GSM and	This will be done by examining the tools that can be used to stop hackers from improving the recovery systems and gaining ac- cess to these sys- tems to reduce the impact of the attack. [6]The limita- tions of this pa- per is that this	8	and private con- texts, this article provided the fully realized assault against the Ethereum blockchain tech- nology.	resistance to MITM attacks, BGP hijacking, and ARP spoof- ing. The findings showed that tar- geting Ethereum in a consortium or private setting is highly damag- ing. Then, a number of de- fences were put forth in an effort to lessen the vul- nerability to	
	ferent groups in this research is based on a number of dif- ferent criteria. Execution steps for each MITM class based on impersonation strategies are presented. Final- ly, a classifica- tion of MITM prevention techniques was suggested.	UMTS, two fre- quently used network tech- nologies, as well as OSI, a refer- ence model. The main proposed classes of MITM attacks are based on the location of the attacker and victim, the com- munication route, and the impersonation techniques	paper did not cover MITM at- tacks in all com- munication channels. The major limitation of this paper is that it does not propose a solu- tion for the new technologies such as RFID, LTE, SIP, HB- like, and VoIP. Also this paper only discussed the MITM at- tacks which have same traffic flow - traffic which goes through middle- man. But the other models of MITM are also in existence.		[8]This paper proposed a sys- tem that detects and prevents the MITM attack that is happen- ing through web portals using tokenization of the sessions be- tween the client and the server.	[8]In this paper, the technique used is the pro- cess of binding the tokens of the session by mak- ing an identifier on the basis of a private key. The client generates a public and pri- vate key pair each time for every website that it needs to use a token on. The private key is kept secretly and checking is done against the identifier. The signature is on the public key and keying ma- terial of the con-	[8]The limitation in this paper is that it only pro- poses the meth- od for the appli- cations that use the sessions.
7	[7]In this study, the viability of MITM attacks is evaluated using analysis and numerical data from the public Ethereum block- chain, a consor-	[7]This article describes signifi- cant topological characteristics of the Ethereum public block- chain. Addition- ally, VMs with limited CPU	[7]The proposed countermeasures are short-term. The demonstrat- ed system when implemented over a WAN, the success rate of MITM attack and			temporary Transport Layer Security (TLS) connection. A pseudo random number is added to the key pair and tokenized.	
	tium, and pri- vate block- chains. In pub- lic, consortium,	quantum were created, and the blockchain was evaluated for	double spending is high.	9	[9]In order to identify, isolate, and reconfigure victim systems	[9]The MITM- method IDS of identifying at- tackers is based	[9]This method detects the MITM attacks and is less likely

	in wireless sen- sor networks, this study sug- gests the Intru- sion Detection System (MITM- IDS) concept. For handling MITM attacks, an IDS based on deep learning has been sug- gested.	on signature-ID templates. The proposed MITM- IDS operates through a net- work of central- ized databases (CDN). Addi- tionally, tools for packet sniffing and network intrusion detec- tion systems (NIDS) are used. Long Short Term	to prevent the attack. This sys- tem only isolates and reconfigures the victim nodes rather than pre- venting the at- tack from hap- pening.		but an experi- enced user will have no trouble doing it. Fur- thermore, the ease with which an attacker may create a fake certificate high- lights the neces- sity for websites to be aware of the dangers of self-signed cer- tificates.	a gateway for the traffic stream and SH must network ex- change data. By intercepting communication at the source and sending it on to the target, the attacker gains the power to change and add messages covert- ly.	
		Memory (LSTM), among other techniques of machine learn- ing, is also em- ployed.		12	[12]This article explains a relia- ble method for defending the Diffie-Hellman protocol against	[12]The suggest- ed approach makes sure that the private keys won't be trans- mitted over the	1[12]This meth- od will be priori- tized over other encryption tech- niques in this paper's future
10	[10]This study examined the prevalence of networks that are susceptible to intrusion us- ing fake ad- dresses. Nearly 4000 DNS server instances that were vulnerable to cache poison- ing attacks were also found dur- ing this research.	[10]Mainly used the technique called Destina- tion-side Source Address Valida- tion (DSAV). Tested a large number of DNS servers for vari- ous attack cate- gories by taking a large data set. Techniques such as Source Port Randomization, OS Identifica- tion, Forwarding and Local Sys- tem Infiltration are used.	[10]Investigated and analysed the attacks on many DNS servers but did not provide a strong alterna- tive way to pre- vent the attack from happening.		man-in-the- middle attacks. The Geffe gen- erator produced a binary se- quence that was incredibly un- predictable. These sequences are also tested statistically be- fore determining the private key and the shared key.	channels and will instead be stored on the server as hashes. Because it can identify between the sender and the receiver on the basis of their user information, it also offers a non-repudiation feature. Our method thus provides addi- tional security features than existing methods and protects against MITM attacks.	efforts to provide a secure cryp- tosystem for se- curely exchang- ing communica- tions. The re- searchers will apply the sug- gested algorithm in a real cloud cryptosystem.
11	[11]It has been shown that it is simple to attack HTTPS-secured Web connec- tions by utiliz- ing some stand- ard LAN fea- tures as well as typical user be- haviour. The assault is not easy to execute,	[11]This article makes the as- sumption that a user on the client host (CH) wishes to conduct an HTTPS- encrypted trans- action on the host server (SH). Given that CH, the attacker host (ATH) serves as	[11]Strong en- cryption is a use- ful tool for pro- tecting data, but the level of secu- rity it offers de- pends on how strong the other encryption or weakest link is.	13	[13]Even when data is encrypt- ed during data exchanges, there is a chance that others will dis- cover the data. One possibility is that the per- son eavesdrops on the two peo- ple's communi-	[13]As a result of employing the interlock proto- col to prevent man-in-the- middle attacks, the authors ar- rive at the con- clusion that even if eavesdroppers were to get and replace the send-	[13]When the passwords are hashed, howev- er, this is ineffec- tive because only half of a hash is useful. Other approaches are also suggested, such as employ- ing a shared se- cret in addition

14 [14] [14] Que of the market methow is a defining the interaction of both more state shade bill by accessing the interaction of both more states shale souths and define market more states shale areas which define market more states shale bill by MITM at factor and more shale souths of both more states shale souths and both more states shale both more states shore both more states shale bothom more shale shale both	 This tactic is er's public keys. The 'forced-likety in the study was a the bear communications. This is during the communications from manine the is bit do access provement can hear bit attack value encoded to the fact acas while encoded the study of t		1	1		
man-in-the- middle assults.[14] We interpret the interaction between the actual defender as a tackel arget geocu- rity game and stackelberg (DoS) and port stealing can be successfully used by MITM attackers, which can have shock.[14] We interpret tacker and the defender as a tackelberg equilibrium[14] Attackers target the actual data being ex- changed between the endpoints defender as a stackelberg rity game and use the Strong factelberg equilibrium stealing can be successfully used by MITM our model, the defender's strat- for both money loss and security issues. The tra- strategies focus of both money loss and security issues. The tra- time ther how to other how to identify and stop them from stop ther how to stop them from stop them from tidentify and south as- stop them how to extra tegies focus stop them how to extra tegies were stop them how to extra tegies were stop them from stop them from tident ally extra tegies focus stop them from tident for the fact the walues the tra- perimentally ever being glauched. In geory such as- stop them from tident defence stop them from tident defence stop them from tideen tech- niques, we ex- perimentally ever being glauched. In geory such as- saults or how to stop them from tide al defence stop them from tide al defence approach with saults or how to stop them from tide al defence approach with saults or how to stop them from tide al defence approach with saults or how to stop them from tide al defence stop them from tide al defence approach with saults or how to s	man-in-the- middle assaults.[14] We interpret in network hacking is the techniques used between the attack adkers and tacker and the defender as a tacker and the defender as a tacker strate trity game and stackelberg find of Service Equilibrium stealing can be successfully used by MITM our model, the defender's strat- boundless, so we effects on cus- of both money loss and security issues. The tra- tacker strategies focus of both money loss and security issues. The tra- termining the stop ther how to stop term from stop term from stop term from tidentify and defence tech- niques to con- identify on the termining the stop term from stop term from stop term from termining the stop term from stop term from termining the exclusted the defence strategies focus stop termining the exclusted termining the exclusted termining the exclusted termining the stop term from stop term from tideal defence stop term from tideal defence stop termining the termining the stop termining termining the stop termining termining termining the termining the stop termining termining termining termining the stop termining the stop termining termining termining termining termining termining the stop termining term		This tactic is known as a Man-in-The- Middle attack. This study uses interlock proto- cols to protect communications from man-in- the-middle at- tacks while en- crypting mes- sages during transmission using the RSA method. Test results demon- strate that using interlock proto-	er's public keys, they would not be able to access or alter commu- nications. This is due to the fact that the encrypt- ed communica- tion is divided into two halves and delivered progressively, making it impos- sible for eaves- droppers to de- termine the orig- inal message that	The forced- latency im- provement can help shield against some	voidable, this study offers a game-theoretic defence ap- proach that tries to reduce the overall system's loss.reducing overall losses from MITM attacks, our game- theoretic defence method performs noticeably better than alternative non-strategic protection strat- egies. 3.METHOD TO BE USED TO DO ATTACK In order to change the IP address that appears in the DNS re- quests that are answered for the client, a series of actions must be taken. Here are the suggested actions that will be taken and the events that will take place for this attack to succeed:
Inducted assultis.google.com," who will then submit it to the DNS server.14[14]One of the most popular techniques used[14]We interpret the interaction between the at tacker and the defender as a tackelberg getu- rity game and Attacks like De- use the Strong Stackelberg (DoS) and port stealing can be set defender's strat- defender's strat- ingly significant effect's on cus- of both money loss and security issues. The tra- strategies focus of either how to ostop such as- stop them from defence tech- nique to con- ridentially by re- identify and stop them from defence tech- non-strategic stop them from defence tech- niques, we ex- launched. In event being issues. The tra- stop such as- stop them from defence tech- niques, we ex- 	14[14]One of the most popular techniques used between the at- defender as a maniar of Service (DoS) and port steakelberg attacker shuther between the at- defender as a tacker and the defender as a tacker and the defender as a tacker strate guilibrium stealing can be successfully used by MITM our model, the defender's strat- boundless, so we effect's on cus- of both money loss and security issues. The tra- ingly significant effects on cus- of both money loss and security issues. The tra- to attacking a proach with saults or how to stop them from stop them from stop them form[14]Attackers table between the at- changed between the endpoints, print, transming the stop such as- stock berg proach with saults or how to stop them from the defence the eraining the saults or how to stop them from enced the transming the eraining the eraining the<		man-in-the-			
14[14]One of the most popular techniques used in network hacking is the Middle attack. Middle attack. (DoS) and port stackelberg (DoS) and port stackelberg secu- goods and port stackers, which attackers, which defender's strat- can have shock- egy space is ingly significant of both money dess the search issues. The tra- tomers in terms of both money dess the search issues. The tra- tomers in terms of both money dess the search defender's strat- egy space is put message in- tegrity on domaination of or werstering the sould so how to both money dense the search loss and security stog such as success for us on any defender state gies focus on either how to stop such as song such as song such as south so the to stop them from elenetify and contrasting our identify and sould so rhow to stop such as south as top such as song such as perimentally elenetify and contrasting our identify and stop such as song such as perimentally elenetify and contrasting our identify and perimentally elenetify and contrasting our identify and perimentally elenetify and contrasting our identify and south as top such as perimentally elenetify and contrastegic to obstruct avail- ability by preventing commu- nication between two parties.Ital/Attackers target the actual datackers which attackers which and tegrity and contrastegic to obstruct avail- approach with elenetic tech- never being perimentally eventing the inducted in The perimentally[14]Attackers target the actual datackers the endpoints, perimentally eventing commu- nication between two parties.Ital/Attackers target the actual target the actual t	14[14]One of the most popular techniques used in network hacking is the hacking is the hacking is the hacking is the stacker and the defender as a Stackelberg secu- mial of Service (DoS) and port stealing can be (SSE) as the de- ferce's tactic. In our model, the successfully issues. The tra- tomers in terms no defence tesh- tomers in terms no fo both money dense the search loss and security ssues. The tra- tomers in terms nique to con- of both money dense the search loss and security stage while de- tiss. Additional ly, an adversary may intercepti noridentify and soft the fibre how to stop such as- stop them from defence tech- ever being alunched. In perimentally eventing commu- identify and contrastegic stop them from defence tech- ever being alunched. In perimentally eventing commu- identify and contrastegic stop them from defence tech- ever being alunched. In perimentally eventing commu- identify and contrastegic stop them from defence tech- ever being alunched. In perimentally eventing commu- identify and terming our identify and contrastegic stop them from defence tech- ever being alunched. In perimentally evaluate it. The[14]Attackers target the actual data being event to stop them from defence tech- ney perimentally eventing commu- non-strategic stop them from defence tech- ney perimentally eventing commu- identify and to the fact the perimentally eventing commu- identify and to the fact the perimentally <td></td> <td>middle assaults.</td> <td></td> <td></td> <td></td>		middle assaults.			
		14	most popular techniques used in network hacking is the Man-in-The- Middle attack. Attacks like De- nial of Service (DoS) and port stealing can be successfully used by MITM attackers, which can have shock- ingly significant effects on cus- tomers in terms of both money loss and security issues. The tra- ditional defence strategies focus on either how to identify and stop such as- saults or how to stop them from ever being launched. In light of the fact	the interaction between the at- tacker and the defender as a Stackelberg secu- rity game and use the Strong Stackelberg Equilibrium (SSE) as the de- fence's tactic In our model, the defender's strat- egy space is boundless, so we use a novel tech- nique to con- dense the search space while de- termining the best defence plan. Finally, by contrasting our ideal defence approach with non-strategic defence tech- niques, we ex- perimentally evaluate it. The	target the actual data being ex- changed between the endpoints, putting its integ- rity and confi- dentiality in danger. By inter- cepting commu- nications and listening in on conversations, an adversary can put message in- tegrity and con- fidentiality at risk. Additional- ly, an adversary may intercept, modify, or de- stroy messages to obstruct avail- ability by pre- venting commu- nication between	Attacker Victim Victim Victim Victim Victim Victim DNS Server 8.8.8 The DNS server will provide a DNS answer in response to a valid request. Victim

IJSER © 2022 http://www.ijser.org Once the attacker has the DNS answer with Google.com's true IP address, they will change this IP address to a malicious fake IP.

4. TOOLS THAT CAN BE USED

1. Host Machine: Laptop or Desktop where virtual machines will be launched

2. Virtual Machine (Victim): Virtual Machine to be attacked

3. Virtual Machine (Attacker): Virtual Machine that will perform DNS spoofing on victim

4. Python 3.6: For writing DNS and ARP spoofing scripts

5. Apache server: To host the fake google webpage

6. NAT Network: Network of Virtual Machines (Victim, Attacker and other virtual machines)

7. Python Libraries (Scapy, NetFilterQueue): Used for packet processing.

8. VirtualBox (by Oracle): To create and manage virtual machines.

5. HOW TO PREVENT MAN IN THE MIDDLE ATTACK?

1. Prohibit using public networks for any private work by workers

2. Avoiding entering the passwords and sensitive data using Wi-Fi networks.

3. Noticing browser warnings and that a website is insecure and taking action on it.

4. When a secure application isn't in use, immediately log out.

5. Avoiding use of public Wi-Fi networks when carrying out transactions that are so important.

6. We can assist in preventing potential assaults by employing surfing encryption software to encrypt the traffic travelling between the network and your device.

6. DISCUSSIONS

DNS spoofing alters the DNS requests made by the clients. Man-in-the-Middle attack is also performed while spoofing the DNS. This is performed through spoofing the ARP. From surveying various researches made by many authors, this paper compiles methods and preventive measures to take in order to avoid such attacks. Many papers have analyzed the attacks and given many theoretical solutions. Few papers have done the demonstrations of the attacks and also given the solution mechanism to avoid the attacks. Many authors have given the solutions by including the various domains such as Machine Learning, Deep Learning and many more. The different networks such as LAN, WAN are analyzed and tested for the solution. The papers also have considered different communication channels and provided the solution for corresponding channels. New technologies such as RFID, LTE, SIP, HB-like, and VoIP are also tested for the attack and the vulnerabilities in these are mentioned and solutions are made.

7. CONCLUSION

A fundamental component of Denial-of-Service and Man-in-The-Middle assaults is a DNS attack. The attacker takes advantage of DNS messages sent in plain text to manage an attack. The suggested system requires little processing time to survive DNS attacks. The query ID and answer name server IP are the two key pieces of information that are encrypted by the proposed strategy using an asymmetric encryption technique. To protect the information from the attacker by authenticating the server, both parameters are needed. As a result, the attacker finds it difficult or impossible to guess the information. As a result of the approach of including the decrypted ID in the response to transmit, the results demonstrate that the suggested technique does not experience a denial of service since the query and response IDs are different. Going forward, we would like to explore remedial measures for such attacks and how to protect against them.

REFERENCES

- Hussain, M. A., Jin, H., Hussien, Z. A., Abduljabbar, Z. A., Abbdal, S. H., & Ibrahim, A. (2016, July). DNS protection against spoofing and poisoning attacks. In 2016 3rd International Conference on Information Science and Control Engineering (ICISCE) (pp. 1308-1312). IEEE.
- [2] Mallik, A. (2019). Man-in-the-middle-attack: Understanding in simple words. *Cyberspace: Jurnal Pendidikan Teknologi Informasi*, 2(2), 109-134.
- [3] H. Poor, "A Hypertext History of Multiuser Dimensions," MUD History, http://www.ccs.neu.edu/home/pb/mud-history.html.
 1986. (URL link *include year)
- [4] Javeed, D., MohammedBadamasi, U., Ndubuisi, C. O., Soomro, F., & Asif, M. (2020). Man in the middle attacks: Analysis motivation and prevention. *International Journal of Computer Networks* and Communications Security, 8(7), 52-58.
- [5] Al-Mhiqani, M. N., Ahmad, R., Abidin, Z. Z., Ali, N. S., & Abdulkareem, K. H. (2019). Review of cyber-attacks classifications and threats analysis in cyber-physical systems. *International Jour*nal of Internet Technology and Secured Transactions, 9(3), 282-298.
- [6] Conti, M., Dragoni, N., & Lesyk, V. (2016). A survey of man in the middle attacks. *IEEE communications surveys & tutorials*, 18(3), 2027-2051.
- [7] Ekparinya, P., Gramoli, V., & Jourjon, G. (2018, October). Impact of man-in-the-middle attacks on ethereum. In 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS) (pp. 11-20).

IEEE.

- [8] Krishnan, V. G., Kumar, B. A., Mohan, R., & Mohanasunder, V. (2020). Man in the Middle Attack Prevention using Token Generation Technique.
- [9] Mohapatra, H., Rath, S., Panda, S., & Kumar, R. (2020). Handling of man-in-the-middle attack in WSN through intrusion detection system. *International journal*, 8(5), 1503-1510.
- [10] Deccio, C., Hilton, A., Briggs, M., Avery, T., & Richardson, R. (2020, October). Behind closed doors: a network tale of spoofing, intrusion, and false DNS security. In *Proceedings of the ACM Internet Measurement Conference* (pp. 65-77).
- [11] Callegati, F., Cerroni, W., & Ramilli, M. (2009). Man-in-the-Middle Attack to the HTTPS Protocol. *IEEE Security & Privacy*, 7(1), 78-81.
- [12] Khader, A. S., & Lai, D. (2015, April). Preventing man-in-themiddle attack in Diffie-Hellman key exchange protocol. In 2015 22nd international conference on telecommunications (ICT) (pp. 204-208). IEEE.
- [13] Rahim, Robbi. "Man-in-the-middle-attack prevention using interlock protocol method." ARPN J. Eng. Appl. Sci 12, no. 22 (2017): 6483-6487.
- [14] Li, Xiaohong, Shuxin Li, Jianye Hao, Zhiyong Feng, and Bo An. "Optimal Personalized Defense Strategy Against Man-In-The-Middle Attack." In AAAI, pp. 593- 599. 2017.

IJSER